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We study the extent to which fixing the second-layer weights reduces the capacity and gener-
alization ability of a two-layer perceptron. Architectures with N inputs, K hidden units, and a
single output are considered, with both overlapping and nonoverlapping receptive fields. We ob-
tain from simulations one measure of the strength of a network—its critical capacity, a.. Using
the ansatz Tmed o (@ — @)~ 2 to describe the manner in which the median learning time diverges
as a. is approached, we estimate a. in a manner that does not depend on arbitrary impatience
parameters. The CHIR learning algorithm is used in our simulations. For K = 3 and overlapping
receptive fields we show that the general machine is equivalent to the committee machine with the
same architecture. For K = 5 and the same connectivity the general machine is the union of four
distinct networks with fixed second layer weights, of which the committee machine is the one with
the highest a.. Since the capacity of the union of a finite set of machines equals that of the strongest
constituent, the capacity of the general machine with K = 5 equals that of the committee machine.
We were not able to prove this for general K, but believe that it does hold. We investigated the
internal representations used by different machines, and found that high correlations between the
hidden units and the output reduce the capacity. Finally we studied the Boolean functions that can
be realized by networks with fixed second layer weights. We discovered that two different machines
implement two completely distinct sets of Boolean functions.
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PACS number(s): 02.70.—c, 87.22.Jb

I. INTRODUCTION

Two-layer perceptrons (2LP’s) are some of the sim-
plest neural networks [1]. Their operation is purely feed
forward: the “external world” sets the state of N in-
puts, which then determine the states of K hidden units.
In the simplest 2LP the K hidden units dictate the
state of a single output. Denoting the inputs by S}“
with 7 = 1,2,..., N, the states of the hidden units by
S;,i = 1,2,...,K, and that of the output by S§°%, the
operation of the network is summarized by

K
gout _ F(Z 'w,-S,-) , (1)
=1
N .
S;=F|> wysi|, (2)
=1

where F'(z) is a nonlinear function and w;, W;; are the
weights, or connections of the network. Figures 1 and
2 depict two basic architectures of such 2LP’s; those
with overlapping receptive fields (ORF) shown in Fig. 1,
in which each hidden unit may be affected by all in-
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puts, and networks with nonoverlapping receptive fields
(NRF) that have the treelike architecture shown in Fig. 2.
We consider here networks with K <« N. Despite
their simplicity, such 2LP’s are capable of implement-
ing highly nontrivial classification tasks, since the func-
tion S°ut(Sin, Sir ... Si1) can be rather complex. In this
paper we deal with the case of binary-valued input and
output, i.e.,

§oU = £1;

Sim = 11,

- T T ONinputunits
S

FIG. 1. Overlapping receptive field network with N : K : 1
architecture.
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FIG. 2. Nonoverlapping receptive field network with
N : K : 1 architecture. Each hidden unit acts as an inde-
pendent perceptron with % inputs.

and use the function
F(z) = sgn(x). (3)

In this case the network implements a Boolean func-
tion. It is the weights w; and W;; that determine which
Boolean function is implemented by the network de-
scribed above.

Perhaps the most interesting aspect of neural networks
is their capacity for adaptive behavior, or “learning” {1].
In the course of a training session a set of P examples,
i.e., inputs for which the desired output is known, is pre-
sented to the network. Using its current “guess” for the
weights, the network produces an output. Depending
on whether this output does or does not agree with the
correct one, the weights are modified. The manner in
which the weights change during training is dictated by
a learning algorithm. Fairly efficient learning algorithms
exist for continuous-valued S; (BACK-PROP [1]) as well as
for the binary case (MRII [1], CHIR [2,3]). Nevertheless,
no learning algorithm for which a convergence theorem
has been proved (for fixed architecture) is known (see,
however, [4]). In general, learning is a computationally
intensive task, with nonpolynomial scaling with problem
size [5]. The main difficulty in training a network is our
ignorance of the correct states of the hidden units: that
is, we do not know the correct “table” of internal repre-
sentations (IR’s) associated with the p = 1,2, ..., P exam-
ples. Had we known these, learning would have become
straightforward. The difficulty of guessing the IR would
be alleviated (at least partially) if we knew the correct
values of the second-layer weights w;. In the context of
learning algorithms that minimize the training error over
all weights, the w; constitute a small subset of K out of
the N K unknowns to be determined. On the other hand,
when learning is viewed in the context of searching for
good IR’s, the importance of w; is clearly enhanced; when
these K parameters are known, the set of IR’s that are
consistent with the output is significantly reduced (even
though the number of correct “tables” of IR’s is still ex-
ponential with P). Hence there is reason to believe that
training is simplified considerably if the w; are fixed, and

only the W;; are to be determined. This is expected to be
the case for learning algorithms that are suitable for net-
works with binary-valued units, which are, in fact, based
on executing a search in the space of possible IR’s [3].
Working with fixed w; amounts to restricting the net-
work so that a predetermined Boolean function is used
from the hidden layer to the output.

Networks that use Boolean functions such as parity,
majority (or committee), AND, etc. are called by the
function used in this manner, e.g., parity machine, com-
mittee machine (CM), etc.

The main question addressed in this paper is whether
one loses at all by restricting the network in this way, and
to quantitatively measure this “loss.” In other words, to
what extent is a machine with a fixed set of second-layer
weights weaker than the most general network with the
same architecture?

One measure of the strength of a network is the num-
ber of Boolean functions it is capable of implementing.
The effect of fixing w; on this measure will be reported
elsewhere (various aspects of the realizable Boolean func-
tions are discussed in Sec. V below). In this paper we use
a different measure for the strength of such machines—
that of their capacity for storing random input-output
associations [6,7]. That is, one generates P random in-
puts, and assigns S°"¢ = +1 at random to each one. For
small P a machine will be able to learn the examples,
but when P exceeds a critical value

P = acheights (4)

one expects that no set of weights can be found that
implements all members of the training set. Note that
Nyeights, the number of adjustable weights, is IV for NRF
and KN for ORF. Capacity serves as a measure of the
strength of various machines. We have set out to first
determine numerically the effect of fixing w; on the ca-
pacity, and to try to understand the reason why some
machines have a higher capacity than others.

Some of these issues were addressed previously both
analytically and numerically. Mitchison and Durbin [8]
used geometrical methods to determine upper bounds for
the storage capacity of the parity and committee ma-
chines. They have shown that the maximal capacity per
synapse (i.e., weight) is bounded for K — oo by log, K.
This bound is violated by replica-symmetric solutions of
the critical capacity derived for the parity machine with
ORF [9] and NRF. For the latter architecture Barkai et
al. [10] were able to show that the replica-symmetric so-
lution (for which one finds a. ~ K?2) becomes unstable,
before a. is reached, against replica symmetry break-
ing. They also obtained the solution of the mean-field
equations with one-step replica symmetry breaking and
have shown that the corresponding a. = Alog, K, with
A — 1 when K — oo, saturating the Mitchison-Durbin
bound. The capacity of the parity machine with NRF
and binary weights was studied by Barkai and Kanter
[11]. The replica-symmetric solution was found to be
stable (at T = 0), and the capacity saturates the theo-
retical bound a. = 1. The situation seems to be differ-
ent for the AND machine, investigated by Griniasty and
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Grossman [12]. For this machine, with both ORF and
NREF, the replica-symmetric solution seems to agree with
numerical simulations and with bounds on the capacity.

Two recent papers [13,14] investigated the capacity of
the CM. For the NRF tree architecture and K = 3 hidden
units the replica-symmetric solution yields a. ~ 4.02,
whereas one-step replica symmetry breaking lowers this
to a, ~ 3.0. In the large K limit the replica-symmetric
solution gives a, ~ K7, violating the bounds obtained
by adapting the arguments of Mitchison and Durbin to
this case. Since a replica symmetry breaking instability
appears already at finite a, one expects that a solution
with broken replica symmetry takes over, and satisfies
the (logarithmic) bound.

For the case of ORF not much analytic information has
been obtained. In this case one expects breaking of per-
mutation symmetry (i.e., different hidden units playing
different roles, even though they are equivalent). This
complicates the analysis considerably, so that the only
available information regarding a. is based on numerical
simulations.

Turning now to numerical studies we first noted that
no reliable results exist in the literature for the capacity
of the general machine (i.e., nonrestricted w;.) As to ma-
chines with various fixed second-layer Boolean functions,
some studies do exist. The capacity was estimated for
the parity machine with NRF [10] and for the K = 2
AND machine [12].

Simulations of the CM for various values of K were per-
formed by both Barkai et al. [13] and Engel et al. [14].
For a given architecture P = aNyeights random (binary)
input patterns are generated, together with their desired
(random) outputs. This training set is presented sequen-
tially to the network, whose weights are modified accord-
ing to the learning algorithm used [8,15]. The network
can learn the entire training set with probability f(a).
For N — o0, f is believed to be a step function, with
f=1for a< ac and f = 0 when o exceeds the critical
value. For finite N, f(a) interpolates smoothly between
1 and 0 as « increases. As a. is approached from below,
the learning task becomes either impossible or possible
but difficult; in the latter case the volume of solutions in
the space of weights decreases towards zero, and hence
the learning time needed for any learning algorithm to
find a solution becomes exceedingly large. Therefore in
the interesting regime, of a =~ a., determination of f is a
computationally intensive task. Obtaining f is severely
hindered by the fact that for multilayered networks there
is no algorithm that either converges when a solution ex-
ists or signals when the problem is insoluble. Hence in
order to obtain f from simulations, both groups use some
arbitrary impatience parameter to decide when the cur-
rent task is unlearnable. Barkai et al. [13] stop training
and declare the task ursolved when the number of learn-
ing steps exceeds a preset value. Engel et al. [14] stop
when the change observed in the weights, accumulated
over an (arbitrarily chosen) number of learning steps,
does not exceed some small preset parameter. The esti-
mates for f(a) obtained in this manner clearly depend on
the learning algorithm used and on the arbitrarily chosen
halting criteria. Both groups find a. by estimating the

value of a at which f = % Therefore these estimates of
a. may be strongly dependent on the details mentioned
above.

Comparison of numerical results to analytically ob-
tained values of a. is complicated further by the need to
extrapolate from finite N (used in numerics) to N — oo
(in which limit the analytic results are obtained). In the
case where analytic results are available, the numerical
estimates for the capacity obtained by both groups are
significantly below the analytic a.. We demonstrated
that by using a more efficient learning algorithm [3] one
can obtain higher f(a) (using the same halting criteria).
This indicates that the apparent lack of agreement be-
tween simulations and theory may have been due to get-
ting impatient too early, and not to problems of extrap-
olation to large V.

One of the aims of this work is to determine a, reli-
ably, in a universal manner, independent of the particu-
lar algorithm and halting criteria used. We combine two
methods that were used previously. The first is that of
measuring for every task Tied, the median learning time
[2,3]. This is the learning time needed to solve the task
in half of the attempted cases. The second aspect relies
on extrapolating this quantity [10] from the low-a regime
towards a.. Details of how our method works and com-
parison of its results to previous studies are presented in
Sec II. Our numerical results are in good agreement with
analytic work.

Our numerical results for general networks with K =
3,5 are presented in Sec. III, where capacities of vari-
ous Boolean machines are also reported and discussed.
For example, we found that the general K = 5 machine
is equivalent to the union of four machines with fixed
second-layer weights. Capacity measurement reveals that
not all four machines are of the same strength; we also
show that the strongest of the four (the CM) determines,
in the N — oo limit, the capacity of their union (and
hence of the general K = 5 machine). We believe that
this is a general result (that has been discussed previ-
ously for NRF architecture only [14]); i.e., the capacity
of a general 2LP equals that of the CM of the same ar-
chitecture.

In Sec. IV we discuss factors that seem to determine
the capacity of different Boolean machines. We found
that higher correlation between states of the hidden units
and the output gives rise to lower capacity. Analytic and
numerical estimates of these correlations are presented.
We also study the manner in which various machines se-
lect, during learning, internal representations in a man-
ner that increases their capacity.

In Sec. V we turn to study the Boolean functions that a
machine with fixed second-layer weights can realize. Our
main (and perhaps surprising) finding is that two sets of
Boolean functions that can be implemented by two such
machines are either identical or completely distinct (with
not even a single common Boolean function).

II. CAPACITY MEASUREMENTS—THE
STRATEGY

We now describe in detail our method for measuring
the capacity of multilayered perceptrons (MLP’s). We set
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as our aim to develop a universal method, i.e., one whose
results are independent of arbitrary impatience parame-
ters and halting criteria. The first difference between our
work and that of (13; 14) is the choice of the learning al-
gorithm. Whereas both Barkai et al. (13) and Engel et
al. (14) used versions of the least action algorithm (15),
we used a more efficient method, CHIR2, adapted to the
problem of MLP’s with fixed second-layer weights. Since
this algorithm has been presented elsewhere (3), we give
here only a brief description for completeness’ sake (see
Appendix B). We used several versions of the basic al-
gorithm. These versions differ from one another in the
manner in which the hidden unit whose state is modified
is selected when the network produces a wrong output
during training. It is important to emphasize that usage
of a superior learning algorithm is not the main point of
this discussion; our approach can be implemented with
any other technique.

Since we did wish to determine the relative efficiency of
our algorithm, we repeated the calculations of [13] for the
committee machine (CM) with both ORF and NRF ar-
chitectures. For N = 150,300, and 450 inputs and K = 3
hidden units we set the same upper bound, of 6000 sweeps
of the training set, which contained P = aNyeights ran-
dom binary patterns. We determined f(a), the fraction
of such learning sessions in which the complete training
set was learned. The data points presented in Fig. 3 were
obtained by performing for each case 300 experiments.
This figure contains also the results of [13] for compari-

e
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FIG. 3. Fraction of successes for committee machine with
K = 3 hidden units. The architecture is either ORF or NRF
and the input size is N = 50,100,150 or N = 150, 300,450
respectively. The time limit was up to 6000 sweeps (presen-
tations of the entire training set). The same limit was used
by Barkai et al. [13] whose results for N = 150 (ORF) and
N = 450 (NRF) are also presented.

son. Clearly, with the same halting criterion, CHIR suc-
ceeds in learning larger training sets than the least action
algorithm. Therefore using f(a.) = 0.5 (obtained from
the largest size studied) to determine the critical capac-
ity, CHIR provides an estimate a, =~ 2.65 for NRF and
a. = 3.0 for ORF which is about 10% higher than that
of Barkai et al. [13]. The result of Engel et al. [14], of
a. = 2 for NRF, is too low to be included in the figure.

In order to eliminate the dependence of a. on halting
criterion, we opted for a different estimator of the critical
capacity. The idea is to measure the median learning time
of a sample of training sets. This is done by recording
the time (i.e., number of sweeps of the P training pat-
terns) needed to learn the complete training set. Many
such training sets are generated and the corresponding
learning times are ordered; Tyeq is the median of this or-
dered sequence. Clearly those cases in which the network
failed to learn the training set (within a preset maximal
number of 7.y sessions) are placed at the high end of the
sequence. We start with a small sample of training sets
to get a rough estimate of Tyed, choose Tiax as twice this
estimate, and then try to learn a large sample. Clearly,
as long as we have f(a) > 0.5, this method yields fi-
nite estimates of Tineq, for whichever learning algorithm
is used.

The median learning time was found to be stable sta-
tistically, with small errors in its measurement. In this
respect working with Tyeq is better than with 7,y, the
average learning time (averaged over successful experi-
ments). This statistic is strongly affected by the long-
time tail of the distribution of learning times, and there-
fore has large statistical fluctuations.

The second and crucial ingredient of our method is
based on a scaling ansatz [10] for the manner in which
Tmed diverges as a. is approached from below. For large
enough a the fraction of learnable training sets is less
than 1, and therefore the median learning time is infinite
(even for finite N). We assumed a power-law divergence
of the form

Tmed X (e —a) ™% . (5)

The value of the exponent a, and even the validity of
such a power law, may depend on the learning algorithm
used. We investigated this possibility, and found that
form (5) with the choice a = 2 (found previously in a
variety of networks) fits our data quite well, allowing a
fairly reliable extrapolation of the measured values to

T =0. (6)

me

Such extrapolations are presented in the next section.

III. CAPACITIES OF TWO-LAYER
PERCEPTRONS: ANALYSIS AND
SIMULATIONS

All our analysis and numerical simulations were done
on networks with zero valued threshold for all units, with
the sign function [Eq. (3)]. Say such a unit receives N’
binary inputs. All the possible inputs can then be repre-
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sented as the corners of a hypercube in N’ dimensions.
The weights entering our unit define a hyperplane that
passes through the origin of this space. In particular,
the possible IR’s of our 2LP form the vertices of a K di-
mensional hypercube. We turn now to our simplest and
smallest 2LP, with K = 3.

A. Two-layer perceptrons with three hidden units

We start with the ORF CM with K = 3. This machine
is completely equivalent to the general 2LP with K = 3.
By this we mean that the CM is capable of implementing
the same Boolean functions of the inputs as the machine
with no restrictions on its second-layer weights. We now
prove this equivalence.

Consider the ORF network of Fig. 1, with K = 3
hidden units. Any Boolean function implemented by such
a network maps the inputs with assignment S°"* = +1
onto one subset of the possible internal representations,
and the inputs for which $°** = —1 onto another subset.
Therefore any network with this architecture has to be
based on a dichotomy of the space of IR’s. Since the
output unit has zero threshold, there are only two basic
planar dichotomies of this space (recall that we use zero
threshold units, hence only planes that go through the
origin are used). These two dichotomies, D; and D,, are
depicted in Fig. 4; full (open) circles represent those IR’s
which are mapped to S°"t = +1 (—1). All other possible
dichotomies are equivalent to either D; or Dj: they can
be mapped to one of these two by permuting the three
hidden units, or by redefining S; — —S; for one or more
of the three.

Clearly, if the general network uses the dichotomy D,
it implements precisely the same Boolean function as
the CM with identical W;;. If the general network uses
D}, say, we construct a corresponding CM by setting its
weights W]; as follows:

Wl’j = le 3 Wzl_.' = ng 5 Wéj = —W3J' .
This change of weights induces a reflection S3 — —S3,
and therefore if the machine with weights W;; maps input
space onto IR’s according to the dichotomy D), the ma-
chine with weights W, uses D3, and hence the Boolean
function implemented by the general network can be re-
alized also by a CM.

The general machine can use also the dichotomy D;. A
dichotomy of this class means that the state of the output
unit is determined by a single hidden unit; we call such

FIG. 4. Two distinct dichotomies D;,D, of the space of in-
ternal representations for K = 3. Dj is equivalent to D,; full
(open) circles represent IR which are mapped to S°*t = +1

(-1).

a 2LP a Ruler machine. For example in the case D; of
Fig. 4 we have S°" = S;. In this case we define our CM
as follows:

Wi,j = W3j

for « = 1,2,3. With this choice all inputs that were
mapped onto the full circled corners in D; get mapped
onto (1,1,1), whereas the other inputs get mapped onto
(=1,-1,-1). This is a particular case of D;, and hence
the CM with weights W, implements the same Boolean
function as the general machine with W;;. Having ex-
hausted all the possible general networks, we have proved
that indeed for K = 3 all networks can be replaced by an
equivalent CM. Note that this equivalent CM does not
have to use the same IR as the general 2LP; the IR space
can be remapped in order to realize the same Boolean
function.

We performed simulations of the CM with ORF and
K = 3, with N = 50,100,150 inputs. The simulations
were done using version 1 of the CHIR algorithm described
in Appendix B, with m = 0, x = 1.0. In all cases we
chose the time limit in a way that ensured that more
than 50% of the cases were solved. 300 training sets were
generated randomly for every value of a, and used to
determine the median learning time 7p,eq4. In Fig. 5 we

present 'r;jd vs a.. There is very little difference between
the data for N = 100 and 150; our results extrapolate to
a. = 3.05.

The equivalence between a general 2LP and the CM
does not hold for the NRF architecture with K = 3.
The reason is that in this case the three hidden units
cannot be permuted. It is easiest to disprove equiva-
lence by assuming that a Ruler machine with w; =1
and w; = w3 = 0 is equivalent to the CM with w} = 1,
and demonstrate a contradiction.

Denote by & = (&;,€,,€3) an input vector that gets
mapped onto S°"* = +1 by both machines (§; is the
input vector to hidden unit 7). This means that the CM
maps this input onto one of four IR’s,

(81,52, S3)
=(+H+4); (++-) 5 (= +) 5 (=++) -

If the first of these appears, consider the input vector
¢ = (&,,—&,,—&;). Since we did not change ¢,, this

03 T T T T T T T T T T T
0.25 | s =50 -
=100 HH
Trof 015 3 2 8 .
0.1} 2 » i
0.05 ®e .
1 1 1 1 1 1 1 1 1 1 1

0
2 21 22 23 24 25 26 27 28 29 3 3.1 3.2
a

FIG. 5. Scaling of 'rﬂ:ff for ORF committee machine with
K = 3 hidden units and N=50,100,150 inputs. Version 1 of
CHIR, with m = 0,x = 1.0, was used. Extrapolation yields
ac =~ 3.05.
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input gets mapped by the Ruler machine onto $°% = +1,
but the CM maps it onto the IR (+,—,—), and hence
onto S°" = —1, and therefore the two machines are not
equivalent. Similarly, for each of the other three IR’s
of the CM that are listed above we can construct, by
an appropriate sign change, an input vector that keeps
producing output +1 for the Ruler machine and —1 for
the CM. The key to this construction was our ability to
change the input in a manner that keeps the input seen
by one hidden unit the same while switching the sign
of the inputs to the other two. This, of course, cannot
be done for the ORF architecture, and for this reason
the NRF architecture contains two types of machines,
that are not equivalent; the Ruler machine (with its two
permutations) and the CM, w; = 1. The most general
NRF 2LP with K = 3 can be represented as the union
of these four “constituent” machines.

We now present a simple argument which shows that
the capacity of a general 2LP equals that of its constituent
with mazimal capacity. To prove this statement we make
the commonly accepted assumption that in the N — oo
limit the function f(«) discussed in the introduction is a
step function for all 2LP’s. Denote by o the capacity
of the ith constituent of our general 2LP, whose capac-
ity is a.. Clearly a, > ag). Assume that o is larger
than all a,(_-‘). This means that the general 2LP can store,
with probability 1, aN patterns, while none of its con-
stituents can store them. This is clearly a contradiction,
since every particular realization of the general 2LP is
equivalent to one of the constituent machines. Note that
this argument holds as long as we have a finite number
of constituent machines.

Using this argument, together with the previously
proved identification of the two constituents of the gen-
eral 2LP with K = 3 and NRF allows us to show that the
general 2LP has the same capacity as the K = 3 NRF
CM. All we have to show is that the CM has a larger ca-
pacity than the Ruler. The capacity of the Ruler is that
of a single unit perceptron; it can store up to P, = 2N,
patterns, where N is the number of the inputs seen by
the ruling unit. Since N; = & we have af = Z, whereas
for the CM o, =~ 3. Thus the capacity of the general 2LP
with NRF also equals that of the CM of similar architec-
ture.

We performed simulations of the NRF CM with N =
150,300,450 inputs. The learning algorithm was the
same as the one used for ORF, and again the time limit
was set to allow determination of Ty,eq. Figure 6 presents

1
the results for 72, vs . Size dependence of the re-
sults is again very insignificant, which indicates that our

estimate of a, =~ 2.75, obtained from extrapolating to
1

Tmes = 0, is probably valid for large N. The same
value was obtained in [4] using the back-propagation al-
gorithm. This value exceeds the numerical estimates ob-
tained by [13,14], but is still lower than the capacity as
given by their first-step replica symmetry breaking cal-
culation. This discrepancy can either be due to a need
for higher replica symmetry breaking, or signal a numer-
ical difficulty in obtaining a. from the one-step analytic
calculation.

0.3 T T T T T T T T T T
0.25 .
02r 8 N=150 1
-05 15k ‘.a N=300 H—
Tmed . ‘5’ N=450 =4
0.1 | tﬁ N
0.05 g@@ -

1 1 1 1

O 1 1 1 I Il i

1.8 19 2 21 22 23 24 25 26 2.7 28 29 3
o

FIG. 6. Scaling of 72> for NRF committee machine with
K = 3 hidden units and N = 150,300,450 inputs. Version 1
of CHIR, with m = 0,k = 1.0, was used. Extrapolation yields
ac &~ 2.75.

B. Two-layer perceptrons with five hidden units

The IR’s of such a network form the vertices of a five-
dimensional hypercube. A plane that passes through the
origin can generate seven different dichotomies (not re-
lated by permutations or sign inversions) of these ver-
tices. Since this result was known for quite some time
[16,17], we present only a sketch of the derivation in Ap-
pendix A. These seven dichotomies give rise to seven
2LP’s, whose second-layer weights w;,7 = 1,2,...,5 are
the following:

10000, 11100, 11111, 21110,
31111, 22111, 32211.

Since we are interested in 2LP’s, we have some addi-
tional freedom (to remap the IR’s) which can be used to
reduce this set of independent w; even further. Consider
first a 2LP with first-layer weights W;; and second-layer
weights (w;) = (10000). This is a Ruler machine which
can be realized by a CM; simply set W"",, = Wi;, i.e., copy
the weights of the ruler unit onto all the others. Now we
can use (w}) = (11111); the resulting CM produces the
same Boolean function as our initial Ruler machine.

Next, consider the 2LP with (w;) = 11100, which ig-
nores the states of units 4 and 5. We can again con-
struct a CM by setting W;; = W;; for i = 1,2,3,4 and
Wg; = —Wa;. This choice of weights ensures that the
contributions of units 4 and 5 to the field seen by the
CM'’s output precisely cancel one another, leaving the
same output as was generated by the originally consid-
ered 2LP.

Finally we turn to the 2LP with (w;) = (21110). In this
case the vote of hidden unit 1 gets weight 2, whereas the
hidden unit 5 is ignored. Clearly, by setting W/; = W;;
for : = 1,...,4 and W5'J- = Wy; we generate a CM in
which the vote of unit 1 is copied to unit 5 and hence
effectively doubled. This CM then implements the same
Boolean function as the machine with 21110.

These simple considerations reduce to four the number
of independent 2LP’s with K = 5 and ORF. The union
of these four constituent machines, whose second-layer
weights are (a) 11111 (the CM), (b) 22111, (c) 31111, (d)
32211, is equivalent to the general 2LP with unrestricted
weights. We performed simulations with N = 25, 50, 100.
These are smaller sizes than those used for K = 3; finite
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size effects give rise to deviation of f(a) from the sharp
step function expected for large N. Hence we first de-
termined the capacity of the general machine by learn-
ing P = aN random patterns with the four machines
in parallel. This was done by taking each learning step
with every one of the machines, and stopping the process
whenever any machine has learned the training set. The
time it took the first machine to obtain a solution was
tabulated as the learning time of the union. The same
method was used to determine the capacity as before:

1

Fig. 7 presents 72 vs a for N = 25,50, and 100. Each
data point was obtained from a sample of 300 training
sets. In this case we do notice finite size effects: linear ex-
trapolation yields a. =~ 3.55 for N = 25 and a, = 3.4 for
N = 50; extrapolation for N = 100 gives the same value
as for N = 50 suggesting that this is approximately the
value of a.. These simulations were done using version 1
of CHIR with m = 0, k = 4.0 (see Appendix B).

Next we studied the four constituent machines sepa-
rately. The results for N = 25,50 and the versions used
are presented in Fig. 8 and the corresponding extrapola-
tions in Table I (except N = 100 for the union). The CM
and the 22111 machine have the same capacities, with
the CM possibly slightly higher; the capacity of 32211 is
somewhat lower and that of 31111 significantly lower. We
tried to understand the differences between the capaci-
ties of these machines, and present some of our findings
in the next section.

For the sake of completeness we studied the K = 5 CM

1
with NRF as well. Results for 7,2, vs o are presented

in Fig. 9 for N = 125 and 250. The critical capacity as
found from extrapolation is a. = 3.15 for N = 125 and
a. =~ 3.08 for N = 250.

IV. PROPERTIES OF IR’S THAT AFFECT THE
CAPACITY OF 2LP’S

In this section we describe briefly various factors that
apparently influence the capacity of a 2LP with fixed

0.12 T T T
i% N=25 O
0.09 - iy N=50 +
—05 i i N=100 O
795 0.06 9
0.03 | (AN .
0 | I 1 1 —1
26 28 3 32 34 36
s

FIG. 7. Scaling of Tx;eof for the union of all four machines
in parallel. The architecture is ORF with K = 5 hidden
units and N = 25,50,100 inputs. Version 1 of CHIR, with
m = 0,k = 4.0, was used.

second-layer weights. A quantity which plays an impor-
tant role is the average correlation between each hidden
unit and the output unit. To see quantitatively how these
correlations affect the capacity of the network, consider,
for instance, a CM with three hidden units. The four in-
ternal representations which induce an output $°%t = +1
are (+’ +, +)1 (—a +, +)’ (+) ] +)1 and (+y +, _)' To
simplify the following discussion we assume that all inter-
nal representations appear with equal probability. Under
this assumption, one can easily verify that the network
obeys the following average correlations:

(setsy =1,  i=1,2,3, 1)

(S°"*818283) = —3 (8)

where S; is the state of hidden unit 7, and the symbol
{(---)) stands for an average over all internal representa-
tions with equal probability. Note that Eqgs. (7) and (8)
are not sufficient conditions to identify the network as
a CM. Consider now a network, denoted as C, which on
the average obeys only constraint (7). Since the average
constraints satisfied by C are weaker than those imposed
on the CM, it is clear that the maximal capacity of C

11111 22111
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FIG. 8. Scaling of 7_.;° for all four
0 0 bt hines with K = 5 hidden units and
12 1.6 2 24 28 32 36 12 1.6 2 24 28 32 36 machines Wi = en umits an
@ N = 25,50 inputs. We used the following
versions of CHIR for each machine 11111,
329211 31111 version 2, m = 0.7,k = 2.0. 22111, ver-
0.25 ———— 0.25 — — sion 1, m = 0,k = 2.0. 32211, version
02 b N=25 Ot 02l N=25 154 2, m = 10,k = 2.0. 31111, version 1,
] N=50 H— N=50 H— m=0,x=1.0.
~ 15 D> 4 0.15 | .
Tred ® Tred ®
0.1 > . 01 @ .
0.05 | \ 7 0.05 | %
1 1 1 . 0 1 1 1 1 1
1.2 16 2 24 28 32 36

o
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TABLE I. Critical capacity of the four constituent machines and their union, the general K =5

2LP.

11111 22111 32211 31111 Union
N=25 a. =~ 3.55 a. ~ 3.55 a: ~ 3.35 a.~ 2.8 a. ~ 3.55
N =50 ac. ~ 3.40 ac. ~ 3.38 ac ~ 3.33 a.~ 24 a:. ~ 3.40

serves as an upper bound for the maximal capacity of
the CM. In the following, this upper bound is calculated
explicitly in the large K limit.

In the general case of a CM with K hidden units, the
average probability that S; differs from S°"* is given by

(-8t = =, )

where the symbol (- - -)) stands again for an average over
all internal representations with equal probability. The
denominator is the total number of internal representa-
tions with output +1, for instance. The numerator has
the same meaning as the denominator, but under the

constraint that S; = —1. In the large K limit one can
verify that
1 1
O(—S°"S)) == — . 10
(O(=55)) = 3 - = (10)

Each one of the hidden units of C with either ORF
or NRF acts as a perceptron which embeds random in-
put and output patterns with an average error defined
in Eq. (10). This problem was discussed by Gardner
and Derrida [7], and from their results one deduces that
the maximal capacity of each hidden unit (perceptron) is
given by

a. = 3V2n K3 . (11)

Since the total number of weights in the CM is K times
the number of weights which affect each hidden unit, the
maximal capacity per weight of the CM is bounded by

ac = 3V2rK . (12)

Note that this upper bound for the maximal capacity of
the CM, a. < o(VK), is identical to the maximal capac-
ity obtained by exact calculations within the framework
of replica-symmetric solutions [13]. Furthermore, one can
verify that any finite disturbance in the probability of ap-
pearance of each internal representation does not affect
the leading order of the upper bound for the maximal
capacity, o(VK). The effect of higher order correlations,
such as Eq. (8), may affect the leading order of the upper
bound for the maximal capacity to be within the right
order, a. < oflog(K)] [8].

Besides the quantitative analytical result discussed
above, the main point we can add at this time is that the
capacity of a 2LP is lower if the hidden units are more
correlated with the output. This statement is intuitively

evident; i.e., in the extreme limit of full correlation of the
output with all hidden units, the 2LP becomes identical
to a simple perceptron. Full correlation is observed also
in the case of a single dominant (“Ruler”) hidden unit.

Thus we identify two measures that are expected to
affect capacity:

(i) Average correlation of all hidden units with the out-
put.

(ii) Maximal correlation of a hidden unit with the out-
put.

We define the following quantity to be the correlation
of hidden unit 7 with the output:

P
1
¢ = (SiSow) = 5 >SSk - (13)
u=1

This quantity is evaluated when a set of P patterns has
been learned. S! is the state of hidden unit i when pat-
tern u is presented.

Consider the task of random mapping of P random
patterns onto S°"* = +1 in networks with ORF archi-
tecture. Using simple arguments, we can estimate the
value of c; for each machine. One can divide the IR’s
into groups according to their correlations with the out-
put unit.

To see how this is done, we treat first the CM. In this
case all hidden units are equivalent.

Consider the following vector:

S = (Soutsla SoutSZy ey SoutSk) . (14)

For K = 5 hidden units, there are 16 such vectors, that
can be divided into three classes,

S=(+++++), (++++-), and (+++— ).
(15)

Clearly the second group of S can appear in five different
permutations, such as (++ + — +), etc. The third group

025 T T T T T T
0.2t =125 K+ -
s OI5F ¢§¢$ N=250 H— |
Tmed $0 |
0.1 é¢¢
L L 4 i
0.05 0@ IS
0 1 1 1 1 1 1
18 2 22 24 26 28 3 32

a

FIG. 9. Scaling of 7% for NRF committee machine with

K = 5 hidden units and N = 125,250 inputs. Version 1 of
CHIR, with m = 0,k = 1.0, was used.
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can appear in ten different permutations, such as (++—+
—), etc. Let us denote these three classes by i = 1,2, 3.

Calculating c;, the average correlation of a hidden unit
in IR group i, with the output, one gets ¢; = 1, %, %,
respectively. Table II summarizes this observation. The
left column contains the weights of the second layer. The
next columns present the classes of S, accompanied by
¢, the average correlation of each vector element in that
class; since all units are equivalent, ¢ is the same within
the class. The last lines shows the size of each class (or
degeneracy) and its label for later reference.

Had all 32 IR’s appeared with the same probability
(i.e., assigned to the same number of patterns), the av-
erage correlation would have been given by

1 3, .1
= [24+105 +202| =0.375. 16
c 32[ +105 +2 5] (16)

In fact we observed that even for very low a the learn-
ing algorithm induces a bias in the selection of IR’s;
the probability of selecting the more correlated classes
i = 1,2 is suppressed, whereas class 3 is preferred. This
tendency becomes more pronounced with increasing «,
as the committee machine tries to accommodate more
patterns by reducing ¢ further. A similar tendency was
observed for the AND machine [12] and CM [14] previ-
ously.

Simulations show that the correlation with the output
(average and maximal correlations are the same for the
CM) decreases from about 0.3 to 0.24 as « increases to-
wards a. (see Fig. 10). Probability of appearance of the
fully correlated IR decreases to p() = 0, whereas the
intermediately correlated IR goes to p(?) ~ 0.009, while
p®) increases to ~ 0.045 (see Fig. 11). These values are
to be compared with p(®) = L. = 0.03125. We computed
also the entropy of the distribution in the space of the
possible IR’s for all machines, given by

TABLE II. Classes of internal representations in the com-
mittee machine.

w; S c S c S c
1 + 1 + % + :
1 + 1 + 5 + i
1 + 1 + H + i
1 + 1 + 5 - 3
1 + 1 — 2 — :
Degen. 1 5 10
Label 1 2 3
32
S=-3 pilogiop: - (17)
=1

This value can give an indication of the effective number
of IR’s that participate in the learning process, that is,
10° . As expected, the entropy decreases with increasing
a since not all IR’s appear with the same probability (see
Fig. 12); the less correlated IR’s appear with increasing
probability. Another measure (the number of IR’s, that
can be associated with each input, by all possible parity
machines) was studied by Boffetta et al. [18].

The other three machines are less simple since not all
hidden units play the same role. In order to simplify
the presentation, we treat only the 16 IR’s that give
Sout = +1. The other case, of Sout = —1, is obtained by
reversing each IR. As in the case of CM, one can divide
the IR’s into classes. We define as a class all the IR’s that
can be achieved by permutation of equivalent hidden units
(i.e., with the same w; ); for example, in the machine with
w; = 31111 class + + + + — has four members, obtained
by permuting the (—) through all four units with w; = 1.

Tables II, ITI, IV, and V summarize the classes of IR’s
for each machine. The structure of the tables is similar to

FIG. 10. Correlations (C) between hidden

and output units in the four machines. w
stands for the units attached to that weight.
These results were taken from simulation
with N = 50. The statistical error of each

point is about the size of the box, or slightly
less.
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P

FIG. 11. Probability (P) of classes for all
machines. The values relate to IR’s with

S°"* = +1. The numbers in parentheses
identify the classes of IR as labeled in Tables
II, ITI, IV, and V (the low probability classes
in machine 32211 are ignored to prevent con-

fusion). The statistical error is shown for
11111; for the other cases it is of the same
size.

the one prescribed for the CM. As in Table II, ¢ denotes
correlation of a hidden unit with the output for IR’s that
belong to class .

The average correlations of the hidden units for ma-
chine 22111 are given by

c(l)=51+3x3+2x1+3x(=3)+6x3-1

c(2) =15[1+3x1+2x04+3%x1+6x0+1]

, (18)

[ Iy N
o=

]

The average correlations of each hidden unit with the
output for the various machines are shown in Fig. 10. The
behavior of this quantity in the region where a — a. is
different for these machines.

In the machine 22111, the average correlation of units
with w = 2 approaches the value of units with w = 1.
This value is similar to that of the CM. Figure 11 shows
the probability of classes of IR and we notice that the
class with ¢c; = 0 and low ¢; (labeled as 5) is enhanced;
this explains why the average c(2) decreases (Fig. 10).

In the machine 32211, the average correlation of the
unit with w = 3 decreases strongly. This behavior sug-
gests that the machine tries to “weaken the dominant
unit” in order to enlarge the number of IR’s participat-
ing in the learning process. In Fig. 11 one can observe
that an IR in which the dominant unit is anticorrelated
to the output is enhanced; this behavior obviously leads
to decrease in the entropy since there is no big class with
high probability (see Fig. 12).

) =51 +2x0+2x1+4x0-1+1+1+2x0+2x(-1)]=
c(2) = 51 +2x1+2x0+4x0+1-1+1+2x1+2x0]=2,
)= 51 +2x1+2x1+4x1+1+1-1+42x(-1)+2x1]=

where c(w) is the average (over all classes of IR) correla-
tion of the hidden units with weight w to the output.

The average correlations of the hidden units for ma-
chine 31111 are given by

b

c(l)=2[1+4x14+1+6x0+4x(-1)] =

oo

cB)=E[1+4-1-1+6-1+1] =1 (19)

The average correlations of the hidden units for ma-
chine 32211 are given by

0

[« 50

(20)

f

The machine 31111 tries to perform the same behavior
as machine 32211 in the sense that it also “weakens the
dominant unit” (see Fig. 10). As seen in this figure, it
fails to lower this correlation below that of the other four
units with w = 1 and a gap is maintained. This fact
manifests itself in Fig. 11 where the class (3), in which the
dominant unit is anticorrelated, has large probability but
it competes with classes (4) and (5), which together have
a larger probability. It is obvious that this machine has
low entropy (see Fig. 12) since it enlarges dramatically
the probability of class (3) which has only one member.

Correlation of the unit with mazimal correlation is de-
picted in Fig. 13. This factor may also have an effect
on the capacity of a machine; the low capacity of the
31111 machine may be due to this, in addition to the low
entropy of this machine. On the other hand, the 32211
machine has similar maximal correlation as the CM but
its capacity is smaller due to lower entropy.

As we mentioned, the entropy indicates the effective
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FIG. 12. Entropy (FE) of all four machines. The entropy
was calculated from all 32 IR’s by Eq. (17) where p; is the
probability of the ith IR. The values of p; match, of course,
those of Fig. 11. The statistical error is within the data
symbols.

number of IR’s that participate. This number (105) for
the four machines is

(a) 11111 ~ 25.1 at a = 3.2,

(b) 22111 ~ 23 at a = 3.2,

(c) 31111 ~ 20 at @ = 2.4,

(d) 32211 ~ 19 at @ = 3.2 (~21.4 at a = 2.4).

These two parameters, entropy and maximal correla-
tion, compete. In order to increase its capacity, a ma-
chine has to maintain high entropy and to decrease its
maximal correlation.

V. BOOLEAN FUNCTIONS

We turn now to address the issue of comparison be-
tween the sets of Boolean functions which can be realized
by different 2LP’s. We compare two 2LP’s that have the
same architecture (same number of inputs and hidden
units and same connectivity—NRF or ORF), but differ-
ent fixed weights from hidden layer to the output.

Assume that the weights between the input and the
hidden units of the “teacher” network are fixed. It is

TABLE III. Classes of internal representations in machine
22111.

wi § ¢ 8§ ¢ 8§ ¢ 38§ c § ¢ 8§ ¢
2 + 1+ 1+ 0+ 1 + 0+ 1
2 + 14+ 1 - 04 1 — 0+ 1
1 4+ 1+ 4+ 14+ =14+ - -
1T o+ 14+ Lo P41
SR S s S e
Degen. 1 3 2 3 6 1
Label 1 2 3 4 5 6

TABLE IV. Classes of internal representations in machine
31111.

wi S§ ¢ 8§ ¢ § c § ¢ § c
3 + 1 + 1 - -1 + 1 + 1
1 + 1 + 3 + 1 + 0 + - %
1 + o1 o+ by 1 + 0o - -2
1 + 1 + ; + 1 - 0 - - %
1 + 1 - I 4 1 - 0o - -1
Degen. 1 4 1 6 4
Label 1 2 3 4 5

interesting to verify whether the second network (“stu-
dent”) can choose the weights between its input and hid-
den units so that it realizes the same Boolean function
as the “teacher.” In the event that the second network
can imitate the first one only for a subset of all possible
input to hidden layer connections, one may wish to esti-
mate the fraction of possibly realizable common Boolean
functions. Another indicator is the distribution of the
overlaps between pairs of Boolean functions belonging to
the two networks (such overlap is defined as the fraction
of all inputs that give rise to similar outputs).

The fraction of the input space for which teacher and
student give different answers is just the generalization
error:

= (O(=Szu S5u))) »

where S%,, and S, are the output of the teacher and stu-
dent respectwely, {--) = 37 X gn--- indicates the
average over the input space. €, can be expressed in

terms of the IR §¥ as follows:

e( B‘ s" B‘(S"))P(S Sy §e= s")

(21)

unl

where {S’"’}ls,,szx is the set of all IR’s, B* (B®) is the
Boolean function implemented from the hidden layer to

the output of the teacher (student). P(St= §% §*= §n

is the fraction of input space for which teacher and stu-
dent get the IR’s S¥ and S” simultaneously;

p(3= 84 5= 5)
Gin W -5
<H (nku S’) 9( Tal )>> e

where Vf’f (Vf’,‘ ) denotes the vector of weights connecting
the input to the teacher’s (student’s) hidden unit .

In the following discussion, networks with ORF and
NREF are treated separately, although the conclusions are
similar. The advantage in a detailed discussion of net-
works with NRF is that some ideas and examples can be
explained and solved in detail.
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TABLE V. Classes of internal representations in machine 32211.

n
o
U
)

w; S ¢ 8§ ¢ § ¢ § ¢ § c S c S c
3 + 1 + 1 + 1 + 1 + 1 + 1 - -1 - -1 + 1
2 + 1 + 1 + 0 + 0 + 1 - -1 + 1 + 1 + 0
2 + 1 + 1 - 0 - 0 + 1 - -1 + 1 + 1 - 0
1 + 1 + 0 + 1 + 0 - -1 + 1 + 1 + 0 - -1
1 + 1 - 0 + 1 - 0 - -1 + 1 + 1 - 0 - -1
Degen. 1 2 2 4 1 1 1 2 2
Label 1 2 3 4 5 6 7 8 9

A. Networks with NRF architecture

In this case the input received by each hidden unit of
the 2LP is decoupled from the others; hence each hidden
unit acts as an independent perceptron. Averaging for
a pair of teacher-student hidden units which are affected
by the same % inputs is done independently of all other

pairs, and hence Eq. (22) becomes

K

1 v

53K [T t+stst(1-2a)
=1

P(s"*: S% §°= §") =

(23)

where ¢ is the fraction of inputs for which a different
state appears on the [th unit of student and teacher. ¢
is nothing but the generalization error of the /th hidden
unit of the student with respect to the /th hidden unit of
the teacher. Using the integral form of the © functions
and assuming that ||W,’||, Wil o« VN, e can be
expressed, at leading order in %, as

1 _
g ==cos 'Ry,
T

22111
0.1} 4

0
0 0204 0608 1 12 14 16 18 2 22 24 26 28 3 3.2 34
a

FIG. 13. Maximal correlation (C) (with output) for all four
machines. Each point represents the most correlated unit at
each machine.

where R; is the cosine of the angle between the student
and teacher weight vectors incident on the /th unit:

is ,Wt
Rl = L‘é;“ .
IWell Il

Equations (21) and (23) provide a constructive method
to evaluate the generalization function for any pair of
NRF machines with the same number of input and hid-
den units. All the pairs (5’"’, S7) for which teacher and
student yield different answers are tabulated. Evalua-
tion of P(gt =5 Y Se=§ ’7) is rather simple; each hidden
unit contributes either a factor ¢ or (1 — ¢;) depending
whether the state of unit ! is the same in the two IR’s or
not. The generalization function is given by the sum of
these probabilities.

First we apply this idea to show that if the second
layer of the teacher and the student implement different
dichotomies, the student cannot imitate the teacher. Af-
ter this we demonstrate by some examples the evaluation
of 4.

Let us consider two 2LP’s whose second-layer weights
wt and w* are fixed and give rise to different dichotomies.
Hence there exists a set of IR’s, {géif}ls,\s,,d“ (nais >
2) [19], for which the output of teacher and student is
different. We analyze particular situations and then we
use the obtained results to treat the general case.

The first instance to be considered is when student and
teacher have identical weights, W = W} for all l, and
hence ¢, = 0 for 1 <! < K. Then every input produces
the same IR in the two networks. From (21) and (23) we
get that e = 53 > 0.

In the second case some ¢; are equal to zero and the
remaining ones equal to 1. Without loss of generality
consider ¢ =0for 1 <I!<lyand ¢ =1forl; <l < K.
We can perform a gauge transformation, that gives rise
to a different student network s', defined by W' = W/

and @} = @} for 1 < I < l;, whereas W = W and
“71‘, = —w} for l; <! < K. Since the characteristic vec-

tors (see Appendix A) associated with @ and W} are dif-
ferent (because the absolute values of their components
are distinct) they implement different Boolean functions
from the hidden layer to the output. So we have a new
set {‘g:i;'\f}l <A<nl (ny; > 2). Clearly the network s’ re-
alizes the same Boolean function as s, but it has e; =0

for all I, and hence this case is reduced to the previous
one.
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The third situation to be considered is when 0 <
e < 1lforl1 <1 < K. We cannot calculate ¢, ex-
plicitly because it depends on w* and *®, but we can
obtain a lower bound. Using (21) and (23) we iden-
tify two certain sources of error. First, when a member
of the set {g:}if}ls A<na; - appears on the teacher’s hid-
den layer and is copied exactly by the student. This
will happen for a fraction ';—%‘H{il (1 —¢€) of the in-
puts. The second source is when an IR §, not from
{5":}“}19\5,,4" appears on the teacher, but the stu-
dent errs on all hidden units, generating -5 as its
IR, and hence the oppos1te output to the teacher.
This occurs with weight 2t H, 1€&. Therefore
6 > BT, (1—e) + Z5p [IE e > 0.

Finally the general case is when 0 < ¢ < 1 for 1 <
l<lh,g=0forl; <l <land ¢ =1 for I3 <
! < K. Making the same gauge transformation as in
the second case we obtain a network that performs the
same Boolean functions as the student. Since the second
layer implements a different mapping from the hidden
layer to the output, we have a new set {S}<a<naer
(nye > 2). Now we can calculate a lower bound for €g as

in the previous case: ¢, > %‘)}‘H:‘:l 1—¢) > 0.

We showed that in all cases the fraction of the input
space for which the two networks give different answers
is greater than zero. This proves that the two networks
do not implement the same Boolean functions.

This method can be applied not only for 2LP’s, but
also for any mapping from the hidden layer to the output.
Consider the case when the hidden layer contains two
units, and the mapping from IR to output is a parity
machine (PM), for both teacher and student (which have
different weights connecting input to hidden layer). The
output of the two-unit PM is the product of the states
of the two hidden units. The student errs when one of
the hidden units agrees and the other disagrees with the
teacher. Hence for this machine the generalization error
of the student is given by

g=€6(l—€)+e(l—c¢).
The generalization error of this example has been cal-
culated previously by Hansel, Mato, and Meunier [20].
With some algebra one can show that the result obtained

by these authors is completely equivalent to this expres-
sion.

In the case of a PM with K hidden units with ¢ = €
for 1 <1 < K we obtain

" = ¥ () ¢ a-o=.

Let us consider now a CM with K hidden units. As-
sume for simplicity that all hidden units have the same
generalization error, ¢ = ¢ (R; = R) for 1 <1 < K. The
generalization error of the CM is given by

(527)
q

=g 3 (1) 5 () 2

x eP+a) (1-ek¥- (p+q) (24)

withm* =K and¢g* =m-p—

To interpret this result note that to get St,, =1, the
teacher must have m > XX1 hidden units in the +1 state.

There are
(@

ways of choosing these m units. To get the opposite
output, the student errs on p of the m units with S; = +1,
and on q of the K — m units with S; = —1. There are

G) < (")
X
p q
ways of choosing the errant units, with each such con-
figuration occurring with probability eP(1 — €)™ Ped(1 —
€) —m—9 = eP+9(1 — ¢)K—9-P. This explains nearly all
factors in Eq. (24). In addition it is necessary to ensure
that the student’s output indeed is —1; i.e., the number
of units with §; = —1 exceeds those with S; = +1; that
is, p+ K —m—q > m—p+q which implies ¢ < % —(m—p).
It is interesting to observe that as K grows this result
approaches the replica-symmetric solution obtained by
Schwarze and Hertz [see Fig. (14)] for large committee
machines [21] which can be written as

_1

€ = %cos(l —2) .

Finally we solve one nontrivial example. The teacher
is a CM with five hidden units and the student has the
same architecture but the weights connecting the hidden
units to the output are (22111). In general the angles
between the weights of teacher and student, incoming to
each hidden unit, are independent variables. However,
to simplify the calculation and the discussion, we assume
that there are only two relevant angles, ¢, = ¢; and ¢ =
€2, giving rise to two errors for the hidden units of the
student which are connected to the output by weights
of strengths 1 and 2, respectively. We obtain for the
generalization error the expression [22]

Generalization Error

00 E : ‘
0.0 0.2 0 4 0.6 0 8 1.0
Generalization Error of each Student-Teacher perceptron

FIG. 14. CM generalization function for different values
of K as a function of . The solid line is the replica-symmetric
result for 1 < K < N obtained by Schwarze and Hertz [21].
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€9 = 15 (1 + 12€; — 12€] + 8¢} + 12e2 — 24€362
+36€2e2 — 24€3e; — 662 + 24€;1€3
—36€2e2 + 24€3€3) . (25)

It is clear that for €; = €3 = 1, ¢ = 3

- Onme can also
verify from Eq. (25) that the minimal value of €, is %
and it is obtained only when ¢; = ¢ = 0, i.e., when
the weight of the student and that of the teacher are
identical.

The fact that the minimal ¢4 is larger than zero means
that for some inputs the two machines produce different
outputs, no matter how W, are chosen. Hence the two
machines do not implement any common Boolean func-
tion: the two sets of functions implemented by them have
no intersection.

The maximal overlap between a pa.ir of Boolean func-
tions taken from the two sets is 1 — ﬁ = %. The rea-
son that the minimal generalization error is Tlg is clear,
since there are only two internal representations which
affect the output of the teacher and the student differ-
ently. Nevertheless, the above calculations prove that
there is no way to circumvent this difficulty by a permu-
tation or a mapping among the internal representations
of the teacher and that of the student.

B. Networks with ORF architecture

For this architecture all hidden units have the same in-
put; therefore they cannot be viewed as K independent
perceptrons. The common inputs induce correlations
between the incident weight vectors of different hidden
units. These correlations complicate matters, and prov-
ing that different 2LP’s with ORF implement different
sets of Boolean functions is more difficult.

We limit our discussion to the generic case of a “reg-
ular” teacher; that is, when the weight vectors W/It,
l=1,...,K are linearly independent. This is the generic
case since a finite number (K) of vectors with NV compo-
nents will be linearly dependent when K <« N only in a
subset of measure zero of cases [23,24].

In this paper we treat in detail only the case when our
regular teacher is imitated by a regular student, whose
weight vectors Vf’l‘ , 1 =1,...,K, are linearly indepen-
dent of the set Vf’f and also linearly independent (the set
W @Wr, = (Wehask U {W;}K
independent). In this case we are able to present a rel-
atively simple proof that the two machines implement
different boolean functions. Furthermore, our proof con-
tains a constructive method to evaluate the generaliza-
tion error. The second situation when the student can
choose a linear combination of Wf as its weight vectors
is treated elsewhere [25].

is linearl
K y

Regular, linearly independent teacher and student
networks

In order to calculate the joint probability (22) for ap-
pearance of any IR in the two networks, let us define the

correlation matrix:

e . A7b
ab wp W,

Im = T Han i 1
IWEN WA
for a,b=s,t and 1<Im< K. (26)

Introducing the integral expression of the © function
in Eq. (22) we obtain, at leading order (see Appendix

C):

P(§t =S¥, §* = §m)

M /°° 2K<dhl)
xexp|:—— > hmSm (47Y),,, Snhn

mn—

} (27)

where A is a 2K x 2K symmetric correlation matrix of
the form
R%® Rst
A= ( Rt Rtt ) .

In (27) we denoted by S the vector whose 2K compo-
nents are given by S = Sy and Sk = 5] for1 <I< K.
When the set W @ W, are linearly independent, the
matrix A is regular [det(A) # 0]. Therefore there is a
nonvanishing probability of simultaneous appearance for
any pair of internal representations S” and S* for the
two networks,

P(§t=§'§ .§’=§’7) >0, Vung

In particular, pairs of IR’s that produce different outputs
on student and teacher will appear, and hence the two
networks implement completely distinct sets of Boolean
functions.

In principle Egs. (21) and (27) can be used to calculate
the generalization error explicitly.

The case when some weight vectors of the student are
a linear combination of those of the teacher is treated
elsewhere [25]. In this case we have also shown that two
distinct restricted 2LP’s implement two different Boolean
functions.

VI. SUMMARY

In this work we have studied the computational capa-
bilities of restricted two layer perceptrons, whose second-
layer weights are fixed. Such a study is relevant for our
understanding of general, nonrestricted 2LP’s, since a
general 2LP with finite number of hidden units is equiv-
alent to the union of networks with distinct second-layer
weights. We focused our attention to two measures of
the strength of such 2LP’s: their storage capacity and
the Boolean functions that they are capable of imple-
menting.

We considered networks with two different architec-
tures; in one architecture (NRF) the connections from
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the input to the hidden layer form nonoverlapping recep-
tive fields, whereas in the second one (ORF) the hidden
layer is fully connected to the inputs. We found that for
ORF machines of K = 3 hidden units all networks are
equivalent to the committee machine, and for five hid-
den units the most general 2LP is equivalent to one of
four classes of 2LP with fixed second-layer weights. An
open question is how the number of classes scales with
the number of hidden units. The upper bound is 2K2,
which is given by the number of different dichotomies
that can be implemented by a perceptron with K inputs.
The number of classes for the nonoverlapping case is de-
termined by the number of different dichotomies that can
be implemented in a space of K dimensions. For the over-
lapping case this number is reduced due to symmetries
between the input units. For instance, the seven different
dichotomies that can be implemented in five dimensions
leads to four classes as mentioned above.

We introduced a numerical method to estimate the
capacity of a network which depends neither on arbi-
trary halting criteria nor on the impatience parameters
used. We used this technique to determine the capacity
of 2LP’s with three and five hidden units for both ar-
chitectures. The learning prescription that we employed
was the CHIR algorithm. For K = 3 our results are in
agreement with theoretical ones. For any K, the capac-
ity of the general machine equals that of its constituent
with highest a.. For K = 5, we found that the committee
machine is the strongest machine; therefore it determines
the capacity of the general machine. We were not able
to prove that for all K the CM has the highest capacity,
but the results of Sec. IV do indicate that this is so.
The effect of learning on the probability distribution of
internal representations was studied. We found a com-
petition between the entropy and the tendency to reduce
the maximal correlation between the hidden units and
the output. A machine has to maintain high entropy and
to decrease its maximal correlation in order to increase
its capacity.

We derived a constructive method to calculate the gen-
eralization error for all pairs of machines with the same
architecture. Explicit expressions were obtained for the
NRF architecture, and as well for ORF machines, but
only for the case when the teacher and student weights
are linearly independent. An important issue for fu-
ture study is to establish the relation of the teacher and
student weights that minimizes the generalization error
for the two different machines. In particular, one may
ask whether the minimal generalization error is achieved
when the weights of the student are a copy of those of
the teachers. Preliminary results show that this is not
the case.

This method and geometrical arguments lead to a
surprising finding: the intersection between the set
of Boolean functions implemented by two different re-
stricted 2LP’s is empty, for all K.

We are currently trying to estimate eg‘i“, the minimal
generalization error (for ORF); that is, how different two
such Boolean functions have to be. Further, it is of in-
terest to know how does e;“i" scale with N and K. These
questions will be answered in the future.
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APPENDIX A: REDUCTION OF A 2LP WITH
FIVE HIDDEN UNITS

Following is the reduction of ORF 2LP’s with K = §
hidden units to a union of seven restricted machines,
based on [16,17] (further reduction to four 2LP restricted
machines, based on weight vector transformations, is pre-
sented in Sec. III). In these references, one can find tables
containing lists of Boolean functions of a single threshold
element, which is analogous to a perceptron. Each ta-
ble stands for a different number of input units and the
maximal number of units reported is 6 + threshold unit.
These tables give all sets of weights needed to implement
any linearly separable (1.s.) function of this number of in-
put units—given the freedom to choose the permutation
and signs of those units. For five units, the table contains
seven sets of weights with zero threshold. Translation to
our problem enables us to use these sets as the weight
vectors w; , i =1,2,...,5 from the hidden layer to the
output. If a problem can be solved with K = 5 hidden
units, the mapping from the IR’s to the output is 1.s. and
one of these weight vectors must give the desired output.

Turning to the evaluation of these weight vectors, con-
sider an N input threshold element—a perceptron. The
2N different input vectors x; = 1 ,i =1,..., N consti-
tute the corners of a hypercube. Define p as the label of
a corner, p = 1,2,...,2". For some arbitrary function
f(p), denote by (f(p)) the summation over all possible

p:
2N
(F() = F(p)- (A1)

Obviously, the input variables satisfy the following rela-
tions:

(E;‘(P)) =0, (xi(/’)“’j (p» = 2N6ij1
z; € {-1,1}. (A2)
If we define the function F(p) by
F(p) =+1 if f(p) = Zil a;z;(p) +ao >0, (A3)

F(p)=-1if f(p) =iz, awi(p) +a0 <0,
one can equivalently define
f(P)F(p) =1f(p)l, f(p)#0 Vp,
or (A4)
(F()F(p)) = (I (0)])-

The last relation is also a sufficient condition for the re-
alization of a Boolean function (presented by F') with a
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single threshold unit. The reason is that the right-hand
side terms are all positive and the left-hand side terms
are the same terms up to signs. The two sums will be
equal if and only if the terms are the same. Denoting

b; = (zi(p)F(p)) (i=1,...,N),
bo = (F(p))

and substituting f(p) into (A4) leads to the relation

(A5)

N

D abi = (£ (o)) -

=0

(A6)

The vector b is called the characteristic vector. This vec-
tor fully describes the Boolean function F. Now any
Boolean function can be reduced to its characteristic vec-
tor. The weights that realize a given Boolean function
can be found by means of an exhaustive search in weight
space till the condition on Ef;o a;b; is satisfied. Ap-
parently, this is a hard problem. The above references
suggest an approximation to f(p), obtained by expand-
ing the function in a power series. This method leads
to some relation between a; and b;. As the size of N
increases, one must use higher powers in the approxima-
tion. This relation is used to tabulate the values of the
weight vector.

Returning to the case of five units, one finds seven
weight vectors, as mentioned. The values of the weights
are

10000, 11100, 11111, 21110, 31111, 22111, 32211 .

Since these seven weight vectors are sufficient to realize
any Boolean function of five input units (that is, L.s. with
one output unit and zero threshold), the set of seven
perceptrons that constitute the union of these vectors is
clearly equivalent to the most general continuous vector.

Moreover, any Boolean function (of five input units)
that is l.s. by a single threshold element must be im-
plemented by one of these seven weight vectors. Since
the reduction to the characteristic vector is unique in the
sense that similar Boolean functions have similar charac-
teristic vectors each l.s. function can be implemented by
one and only one weight vector. The conclusion is that
different weight vectors are capable of implementing dif-
ferent sets of Boolean functions .

APPENDIX B: THE CHIR ALGORITHM

In this Appendix we first make a short review of the
CHIR algorithm and then describe the versions used in
this work. A comprehensive and detailed explanation of
this algorithm is available in [2,3].

1. Review of the CHIR algorithm

The CHIR algorithm has appeared in the literature in
several variants. The variant used in our work is CHIR2
[3,26]. This variant, as opposed to the original one [2],

does not require storing the IR of each pattern. The
weights are corrected every time a presented pattern gives
wrong output.

Consider the architecture of Fig. 1 with N input, K
hidden, and 1 output units. The units are binary thresh-
old units. The states of these units are determined by
the rules [see Eq. 1,2]

N
S,; = sgn(hi), hi = Z W,;j S;n 5 (Bl)
0
K
S =sgn(h), h= w;S;. (B2)
1=0

Here W;; are weights assigned to connections from input
to hidden layer; the weight w; connects hidden unit 7 to
the output. W;o and wg are, respectively, biases of the
hidden and output units, with So = Si* = 1. For i > 0
the variables Si®, S;, and S denote the states taken by
the input, hidden, and output units, respectively. During
a training session, the input units are set in any one of
u = 1,..., P patterns, i.e., S;-" = ¢4, In a typical task,
such a network has to “learn” to produce P specified
answers, S* = £#, in response to the P input patterns.

The learning process (see Fig. 15 for a flow chart) starts
out by setting w; and W;; randomly. The procedure al-
ternates then between two learning stages, Learn23 and
Learn12.

Learn23. The hidden layer serves as source and the
output as the target unit of the perceptron learning rule
(PLR), used to learn the w;. The weights W;; remain
fixed during this stage. We present a pattern u as input
(i-e., set S = ¢). The resulting state of the hidden
layer, as obtained from (B1), is the internal representa-
tion of pattern u. This IR state is used by the PLR to
search for appropriate weights w;, to obtain the desired
outputs S = £#. If the PLR finds such w;, we stop; the
complete learning problem has been solved. Otherwise
we stop after I3 learning sweeps of the entire training
set [27], keep the current weights, and turn to the next
stage, Learnl12.

Learn12. While the current values of w; remain fixed,
apply a learning process to W;;. Using the PLR at this

random weights.

Learn 23

Use PLR and the current in.Rep.

is success achieved ?

M A solution is found
STOP.

Update one hidden unit whenever
there is an ervor.

[

New cycle.

FIG. 15. Flow chart of the CHIR2 algorithm.
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state is problematic, since only the states of the source
units, i.e., the input of the network, are known. The
corresponding target state (of the hidden layer) is not
known. The training set is presented sequentially, pat-
tern by pattern. If we get a wrong output, we choose one
hidden neuron that gives a wrong contribution to the
field acting on the output unit. This neuron is chosen
according to a minimal disturbance principle [28]. The
state (+1) of the unit (obtained in response to the current
input) is flipped by modifying the weights W;; incident
on it, using an Abbott—Kepler linear rule [29], which en-
sures that the internal representation is actually changed
following the modification. At each representation of a
pattern, only one hidden unit can be flipped.

If the network has achieved error-free performance for
the entire training set, learning is completed and a solu-
tion of the problem has been found. If no solution has
been found after I;,; sweeps of the training set, we abort
the learn12 stage, restart the cycle with learn23, and so
on.

After each learning step, we normalize the weights in-
cident on the chosen neuron to avoid an exponential de-
cay of the weights of some units arising from repeatedly
choosing the same neuron (since we choose with higher
probability neurons with small fields).

2. Description of the versions used

One can define different ways of choosing the hidden
unit to be flipped, or to modify the weight vector entering
the unit picked. Another parameter of the algorithm is
the inverse temperature 3, that controls the randomness
of the flipping mechanism.

Version 1. This version can be summarized as follows,
(1) Identify all hidden units whose contribution to the
field acting on the output has wrong sign, as candidates
to be flipped. (2) Define the flip probability for these
units,

J

Nen'
B=1{ & + 8 *tanh %“2
€1 + S # tanh Q—E—l) +
where we take
& =0.85N, ,
£, =1.25N, ,
N.=«x VN,
S & — &

Th(VN+VN.-1)

Equation (B4) defines two slopes as in Fig. 16, and
a turning point, N.. The point N, and the slope of 8
v8 N depend on N. The crossover is moderated by
a smooth function that connects the two slopes at some
points near N, £, and &;; we used a hyperbolic tangent
function whose first derivative matches the two slopes at
both ends. x is some prechosen constant (of order unity)
that is adapted to the problem. Performance is not very
sensitive to changes in the parameters of the function 3,

p(3) exp—ﬂ(lhal—mAEm) , (B3)
where h; is the field entering the hidden unit; m is some
constant that controls the influence of AE,,, on p(7) ;
AFE,,, is the change in the output error that is induced by
flipping the sign of hidden unit . In the case of one binary
output, we can either have AFE,,, = 0 (when flipping
the sign of hidden unit ¢ does not correct the error) or
AFE,: = 1 when the output s corrected by the flip.

0 is a temperaturelike parameter that determines how
often we flip a unit with large field [30].

(3) Choose one of these units randomly according to
its probability.

(4) Update the chosen unit’s weights so that its sign
flips.

Note that the term mAE,,; has no effect when used
in a CM since all units have the same influence on the
output.

Version 2. Another version which we considered was
similar to Version 1. The only difference appears in step
1, in that, instead of allowing only the “wrong” units,
we take all units as candidates for a learning step. The
probabilities p(i) are defined in the same manner as in
Version 1. Flipping a unit that pulls the output in the
correct direction cannot reduce the error, hence for such
units AFE¢,; = 0.

As mentioned above, one can define the parameter 3
in different ways. If the network converges, one would
like this parameter to decrease in order to avoid a cy-
cle occurring near a solution. The original CHIR2 paper
suggested choosing 3 = Ne,, (the number of misclassified
patterns). We found that in the random input-output
problem, this “heating schedule” is too radical for the
early stage of learning.

In this work, we used a new heating schedule. The
variation we used is based on a double stage parameter
with a predefined crossover point between the two stages.

lf Nerr < Sl,
if gl S Nerr < 827
Nerr Z 82,

(B4)

il
T

Nc Nen'

FIG. 16. Typical g3 (for the heating schedule) as a function
of Nerr, the number of misclassified patterns.
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as long as the general dependence on /N is kept.

In all our simulations, we used this version with differ-
ent values of k, as reported in each figure.

To conclude, the parameters that changed in the sim-
ulations were

(i) the version—1 or 2,

(ii) the parameter m,

(iii) the parameter k that controls the function 8.

APPENDIX C: DISTRIBUTION OF THE
INTERNAL REPRESENTATIONS

In this Appendix we derive expression (27). The start-
ing point is Eq. (22). We calculate the fraction of the
input space, P, whose corresponding internal | representa-
tion is § for a 2LP with first- layer weights W;,

P(§) = <<1§[1 @(T—Wﬁi 5,) >> (C1)

The © functions for each hidden unit ! can be expressed
as

L) {5

(C2)

where z; = ”W ” S; is the embedded strength on the

Ith hidden unit. Introducing Eq. (C2) and taking into
account that the input components Sin; only affect z;,
Eq. (C1) becomes

[H() [ (%) ()

The average over the independent random components
of the input vectors gives

(C4)

hi Si W
exp Zlncos(Z HW:H )

=1

Wi; denotes the jth component of the Ith weight vector.
Considering |Wi|]| « N, Eq. (C4) becomes, at leading
order,

1S -
exp| =5 Y hiRim hm

lm=1
with

Rin= Si R S for 1<Im< K,

where Ry, is the correlation between Wl and Wm defined
in Eq. (26).

Introducing this expression in Eq. (C3), integrating on
the hy, and using that

det(ﬁ) = det(R) ,
and
(B = s [B7,, S
we obtain
L dhy
’(3) - m L L ( )

X exp ——;— Z hiS; [R7Y], Smbm

l,m=1

The fraction of the input space that gives a specific
IR can be interpreted as the probability of obtaining this
IR given a random input. In this framework this result
is a manifestation of the multidimensional central limit

theorem by observing that the local fields h; = v!‘|,Ws|l|
become random variables with () = 0, (b1 hm)) = Rim

for random binary uncorrelated input components.
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